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2 JOSEPH WIENER

1. STATEMENT OF THE PROBLEM STUDIED

Functional differential equations (FDE) with delay provide a math-
ematical model for a physical or biological system in which the rate
of change of the system depends upon its past history. Although the
general theory and basic results for FDE have by now been thoroughly
investigated, the literature devoted to this area of research continues
to grow very rapidly. The number of interesting works is very large,
so that our knowledge of FDE has been substantially enlarged in re-
cent years. Naturally, new important problems and directions arise
continually in this intensively developing field.

The report summarizes the results in the study and addresses the
need for further investigation of generalized solutions to broad classes
of FDE. The project concentrated on differential equations with piece-
wise continuous arguments (EPCA), the exploration of which has been
initiated in our papers a few years ago. These equations arise in an
attempt to extend the theory of FDE with continuous arguments to dif-
ferential equations with discontinuous arguments. This task is also of
considerable applied interest since EPCA include, as particular cases,
impulsive and loaded equations of control theory and are similar to
those found in some biomedical models. A typical EPCA contains ar-
guments that are constant on certain intervals. A solution is defined
as a continuous, sectionally smooth function that satisfies the equation
within these intervals. Continuity of a solution at a point joining any
two consecutive intervals leads to recursion relations for the solution
at such points. Hence, the solutions are determined by a finite set of
initial data, rather than by an initial function as in the case of general
FDE. Therefore, underlying each EPCA is a dynamical system gov-
erned by a difference equation of a discrete argument which describes
its stability, oscillation, and periodic properties. It is not surprising
then that recent work on EPCA has caused a new surge in the study of
difference equations. Of significant interest is the exploration of partial
differential equations (PDE) with piecewise continuous delays. Bound-
ary and initial-value problems for some EPCA with partial derivatives
were considered and the behavior of their solutions investigated. The
results were also extended to equations with positive definite operators
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in Hilbert spaces. This topic is of great theoretical, computational,
and applied value since it opens the possibility of approximating com-
plicated problems of mathematical physics by simpler EPCA.

It is well known that profound and close links exist between func-
tional and functional differential equations. Thus the study of the first
often enables one to predict properties of differential equations of neu-
tral type. On the other hand, some methods for the latter in the special
case when the argument deviation vanishes at individual points have
been used to investigate functional equations. Functional equations
are directly related to difference equations of a discrete argument, and
bordering on difference equations are impulsive FDE with impacts and
switching and loaded equations (that is, those including values of the
unknown solution for given constant values of the argument). The ar-
gument deviations of the EPCA considered in the project vanish at
countable sets of points, and it would be interesting to investigate the
relationship between EPCA and functional equations. Another deserv-
ing direction of future research is the exploration of hybrid systems
consisting of EPCA and functional equations. Futhermore, EPCA are
intrinsically closer to difference rather than to differential equations.
Equations with piecewise constant delay can be used to approximate
differential equations that contain discrete delays. It would be useful to
draw a detailed comparison of the qualitative and asymptotic properties
of differential equations with continuous arguments and their EPCA
approximations, which has been widely used for ordinary differential
equations and their difference approximations. Since the arguments of
an EPCA have intervals of constancy we must relinquish smoothness
of the solutions, but we still retain their continuity. This enables us to
derive a homogeneous difference equation for the values of a solution
at the endpoints of the intervals of constancy and to employ it in the
study of the original EPCA, thus revealing remarkable asymptotic, os-
cillatory, and periodic properties of this type of FDE. Of course, it is
possible to further generalize the definition of a solution for an EPCA,
by abandoning its continuity, and to include in the framework of EPCA
the impulsive functional differential equations.

Along with mildly weakened solutions of EPCA, the project also ex-
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plored generalized-function solutions of ordinary differential and func-
tional differential equations. The unifying theme of the project is the
development of theoretically meaningful and potentially applicable gen-
eralized concepts of solutions for important classes of FDE. A common
feature of these equations is that their arguments have a fixed point.
Thus, the argument of a typical EPCA is the greatest-integer func-
tion, and we also focus on FDE with linearly transformed arguments.
Hence, it is natural to pose the initial-value problem for such equations
not on an interval but at a number of individual points. Contrary to
general functional differential equations, EPCA of all types (retarded,
advanced, mixed, neutral) have two-sided solutions, and FDE with lin-
early transformed arguments possess, under certain conditions, analytic
or entire solutions. Some methods in the theory of entire solutions are
applied to prove stability theorems for linear EPCA with variable co-
efficients. Integral transformations establish close connections between
entire and generalized functions (distributions). Therefore, a unified
approach may be used in the study of both distributional and entire
solutions to some classes of linear ordinary and functional differential
equations.

Recently there has been considerable interest in problems concern-
ing the existence of solutions to differential and functional differential
equations in various spaces of generalized functions. Many important
areas in mathematics and theoretical physics employ the methods of
distribution theory. Generalized functions are continuous linear func-
tionals on spaces of infinitely smooth functions with certain conditions
of decay at infinity. They provide a suitable framework where major
analytical operations such as differentiation can be performed. Fur-
thermore, the importance of the class of generalized functions stems
from the fact that it includes the set of regular distributions repre-
sented by locally integrable functions. There is an abundance of sin-
gular distributions, and the Dirac delta function is one of them. It is
well known that normal linear homogeneous systems of ordinary dif-
ferential equations (ODE) with infinitely smooth coefficients have no
singular distributional solutions. However, these solutions may appear
in the case of equations whose coefficients have singularities. We de-
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velop the methods of study and establish some major results for linear
ODE in the space of finite-order distributions (finite linear combina-
tions of the delta function and its derivatives). An existence criterion
of such solutions for any linear ODE is found. Necessary and sufficient
conditions are discovered for the simultaneous existence of solutions to
linear ODE in the form of rational functions and finite-order distribu-
tions. The results are also used in the study of polynomial solutions
to some important classical equations. Then distributional solutions
of certain classes of ODE and FDE are presented as infinite series of
the delta function and its derivatives. Existence and nonexistence the-
orems in spaces of infinite-order distributions are obtained for linear
equations with polynomial coefficients and used to explore their entire
solutions. We emphasize and investigate the conditions when linear
FDE with polynomial coefficients and linearly transformed arguments
have entire solutions of zero order. This is a remarkable dissimilar-
ity between the behavior of FDE and ODE since first-order algebraic
ODE have no entire transcendental solutions of order less than 1. An
equally striking phenomenon is the existence of distributional solutions
for linear homogeneous FDE without singularities in the coefficients. In
other words, distributional solutions to linear homogeneous FDE may
be originated either by singularities of their coefficients or by argument
deviations. Recent studies have shown that nonexistence of infinite or-
der distributional solutions for linear time-dependent delay equations
with real analytic coefficients implies nonexistence of small solutions
(approaching zero faster than any exponential as t tends to infinity),
which is important in the qualitative theory of FDE. It would be nice
to extend the results on distributional and entire solutions and their
interplay to partial differential equations (PDE). As a first step in this
direction, one could take a linear PDE in two independent variables
with polynomial coefficients that admits separation of variables, then
consider a series whose terms are products of distributional solutions
of the ordinary differential equations arising after separation.
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2. SUMMARY OF THE MOST IMPORTANT RESULTS

We shall describe now some of the work that has been done in the
project on the differential equations that we call equations with piece-
wise continuous arguments, or EPCA. A brief survey of the present
status of this research is given in [5]

A typical EPCA is of the form

x'(t) = f(t, x(t), x(h(t))),

where the argument h(t) has intervals of constancy. For example, in [4]
equations with h(t) = [t], [t - n], t - n[t] were investigated, where n
is a positive integer and ['1 denotes the greatest-integer function. Note
that h(t) is discontinuous in these cases, and although the equation fits
within the general paradigm of delay differential or functional differen-
tial equations, the delays are discontinuous functions. Also note that
the equation is nonautonomous, since the delays vary with t. Moreover,
as we have mentioned, the solutions are determined by a finite set of
initial data, rather than by an initial function, as in the case of gen-
eral FDE. In fact, EPCA have the structure of continuous dynamical
systems within intervals of certain lengths. Continuity of a solution
at a point joining any two consecutive intervals then implies recursion
relations for the solution at such points. Therefore, EPCA represent a
hybrid of continuous and discrete dynamical systems and combine the
properties of both differential and difference equations.

An equation in which x'(t) is given by a function of x evaluated at t
and at arguments It],... , [t - N], where N is a non-negative integer,
may be called of retarded or delay type. If the arguments are t and
[t- .],..., [t + N], the equation is of advanced type. If both these types
of arguments appear in the equation, it may be called of mixed type.
If the derivative of highest order appears at t and at another point,
the equation is generally said to be of neutral type. All types of EPCA
share similar characteristics. First of all, it is natural to pose the initial-
value problem for such equations not on an interval but at a number
of individual points. Secondly, for ordinary differential equations with
a continuous vector field the solution exists to the right and left of the
initial t-value. For retarded FDE, this is not necessarily the case [6].
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Furthermore, it appears that advanced equations, in general, lose their
margin of smoothness, and the method of successive integration shows
that after several steps to the right from the initial interval the solution
may even not exist. However, two-sided solutions do exist for all types
of EPCA. Finally, the problems for EPCA studied so far are closely
related to ordinary difference equations and indeed have stimulated
new work on these.

It is important to note that EPCA provide the simplest examples
of differential equations capable of displaying chaotic behavior. For
instance, following Ladas [7], one can see that the unique solution of
the initial-value problem

x'(t) = 3x([t]) - x2 ([t]), X(0) = co

where [t] is the greatest-integer function, has the property that

x(n+1)=4x(n)-x 2(n), n=0,1.

If we choose co = 4 sin 2(7r/9), then the unique solution of this difference
equation is

x(n) = 4sin2 (2n.r)\9'

which has period three. By the well-known result [8] which states that
"period three implies chaos," the solution of the above differential equa-
tion exhibits chaos. Furthermore, the equation of Carvalho and Cooke

x'(t) = ax(t)(1 - x([tJ))

is analogous to the famous logistic differential equation, but t in one
argument has been replaced by [t]. As a result, the equation has solu-
tions that display complicated dynamics [2]. It seems likely that other
simple nonlinear EPCA may display other interesting behavior.

The numerical approximation of differential equations can give rise
to EPCA in a natural way, although it is unusual to take this point of
view. For example, the simple Euler scheme for a differential equation
x'(t) = f(x(t)) has the form xn+, - xn = hf(xn), where xn = x(nh)
and h is the step size. This is equivalent to the EPCA

x'(t) = f(x([t/h]h)).
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Impulsive differential equations and loaded equations of control the-
ory fit within the general paradigm of EPCA. Another potential ap-
plication of EPCA is the stabilization of hybrid control systems with
feedback delay. By a hybrid system we mean one with a continuous
plant and with discrete (sampled) controller. Some of these systems
may be described by EPCA [31.

EPCA have only been researched for a few years. In each of the
areas - existence, asymptotic behavior, periodic and oscillating solu-
tions, approximation, application to control theory, biomedical models,
and problems of mathematical physics - there appears to be ample
opportunity for extending the known results.

2.1. Boundary-Value Problems. The main emphasis in the project
was the study of partial differential equations (PDE) with piecewise
continuous delay. The first fundamnental paper [91 in this direction ap-
peared in 1991. It has been shown in [9] that these equations naturally
arise in the process of approximating PDE by using piecewise constant
arguments. Thus, if in the equation

u, = a2uXX - bu,

which describes heat flow in a rod with both diffusion a2u., along the
rod and heat loss (or gain) across the lateral sides of the rod, the lateral
heat change is measured at discrete times, then we get an equation with
piecewise constant argument (EPCA)

ug(x,t) = a2 uXX(x,t) - bu(x, nh),

t E [nh, (n + 1)h], n= 0,1,...

where h > 0 is some constant. This equation can be written in the
form

ut(x,t) = a2u X(x, t) - bu(x, [t/h]h), (1)

where [-] designates the greatest-integer function.
The diffusion-convection equation

Ut = a 2u., - rux
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describes, for instance, the concentration u(x, t) of a pollutant car-
ried along in a stream moving with velocity r. The term a2u., is the
diffusion contribution and -rut is the convection component. If the
convection part is measured at discrete times nh, the process results in
the equation

u,(x,t) = a2uXX(x,t) - ru,(x,[t/h]Ih). (2)

These examples indicate at the considerable potential of EPCA as an
analytical and computational tool in solving some complicated prob-
lems of mathematical physics. Therefore, it is important to investigate
boundary-value problems (BVP) and initial-value problems (IVP) for
EPCA in partial derivatives, and explore the influence of certain dis-
continuous delays on the behavior of solutions to some typical problems
of mathematical physics.

The topic of [9] is the BVP consisting of the equation

au(X, t)+ (a) xt Q(a)u(x[ h,(3

where P and Q are polynomials of the highest degree m with coefficients

that may depend only on x, the boundary conditions

Lju = (Mjku(k- 1 )(O) + Njku(k-1)(1)) = 0, (4)
k=I

(Mkj and Nik are constants, j = 1,..., m)

and the initial condition

u(x,0) = uO(x). (5)

Here [.] designates the greatest-integer function, (x, t) E [0, 1] x [0, 0c),
and h = const. > 0. Conditions (4) will be written briefly as

Lu=0.

An important result has been established that BVP (3), (4), (5) has a
solution in [0, 1] x [nit, (n + 1)h], if the following hypotheses hold true:
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(i) The boundary-value problem

P(X - AX = 0 LX 0

is self-adjoint, all its eigenvalues Aj are positive.
(ii) For each Aj, the roots of the equation P(z) - Aj = 0 have non-

positive real parts.
(iii) The initial function Uo(x) E Cm [0, 11 satisfies (4).

The solution un(x,t) of BVP (3), (4), (5) on the interval nh < t <
(n + 1)h is represented in the form of a Fourier series

00
t) = n (6)

j=1

where Xj(x) are the eigenvalues of the operator P. The functions Tnj(t)
are solutions of ordinary EPCA that arise after separation of variables.

For instance, in [0,1] x [nh, (n + 1)h], the solution u,(x, t) of Eq. (1)
with boundary conditions Un(x, nh) = Un(X) is sought in form (6).
Separation of variables produces

Xj(x) = Vf2sin(7rjx), T~nj(t) + a27r2j 2Tnj(t) = -bTnj(nh),

whence

To (t) = Cje-a22j2(t-h) b T(nh).
a2 7r2j 2

We put t = nh in this equation and get

C =j 1 + a2b2j2) Tnj(nh),

that is,

Tnj(t) = Ej(t - nh)Tnj(nh),

where

Ej(t) = e-a27r2j2 e - 2-7r•j22) b(a2 7r2j2  (7)

At t =(n + 1)h we have

Tnj((n + 1)h) Ej(h)Tnj(nh)
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and since

Tn. ((n + 1)h) = Tn+ jj((n + 1)h),

then

Tn+l,j((n + 1)h) = Ej(h)Tnj(nh)

and

Tnj(nh) = E;(h)Toi(O).

Therefore,

Tnj(t) = Ej(t - nh)En(h)Toj(O)

and
00

un(x, t) = Vi v2En(h)Toj(O)Ej(t - nh) sin(7rjx). (8)
j=1

Pu.-ting t = 0, n = 0 gives
00

uo(x) = •_ Toj(0)V/2sin(irjx) dx
j=1

and

T0j(0) = V21 J 0
1 uo(x)sin(7rjx) dx.

If IEj(h)l < 1, then solution (8) decays exponentially as t --+ co, uni-
formly with respect to x. From (7) it follows that this is true if

-a 27r 2< b <a 2 7r 2e2 +
ea 2w2h - 1

Furthermore, from the equations

Tnj(nh) = EZ(h)To,(O), Tj((n + 1)h) - E7+'(h)Toj(O)

we see that Tnj(nh)Tj ((n+1)h) < 0 if Ej(h) < 0. The latter inequality
holds true if

a2bT2
b > ea22h- 1(9)
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Hence, under condition (9) each function T,j(t)(j = 1, 2,... ) has a zero
in the interval [nh, (n + 1)hi, in sharp contrast to the functions Tj(t) in
the Fourier expansion for the solution of the equation ut = a2uzz - bu
without time delay. Moreover, the inequality Ej(h) < 0 takes place for
sufficiently large j and any b > 0. Therefore, for b > 0 and sufficiently
large j, the functions Tj(t) are oscillatory.

Eq. (2) on nh < t < (n + 1)h becomes

au.(x,t) =_ a28 u.(xt) _ru.(4

at Ox2

and we differentiate the latter with respect to t to obtain the equation

Oyn _ a20 yn auno- -i - O 2 ' Y n = --9 i -
at -a-, yn

whose solution is sought in form (6). Separation of variables leads to
the equations

X"(x) + AX(x) = 0, T,(t) + a2AT.(t) = 0,

and the boundary conditions un(0,t) = u"(1,t) = 0 give Aj = j 27r2 and

Yn(X, t) = V2 iTnj(nh)e-a2 V2j 2(t-nh) sin(7rjx).
j=l

Since

Yn(X) nh) = a2t4f (x) - ru41(x), Un (X) = Un (x, nh),

then

a2u,(x) - run(x) = vl2Tnj(nh) sin(7rjx)
j=1

and

T,,(nh) = -a27r2j2/vFoJ un(x) sin(irjx) dx

+ r,•rj V2 0 1u,(x) cos(irjx) dx.



FUNCTIONAL DIFFERENTIAL EQUATIONS 13

Finally

V V2T j(nh) (1 - e-a'21i 2 (t-nh)) sin(7rjx)UnX t) = UW+ E 22*
j=1 a7r J

Given the initial function u(x, 0) = uo(x), we can find the coefficients
Toj(0) and the solution uo(x,t) on 0 < t < h. Since uo(x,h) = uI(x),
we can calculate the coefficients T1j(h) and the solution ul(x,t) on
h < t < 2h. By the method of steps the solution can be extended to
any interval [nh, (n + 1)h].

The equation
. u(x, t) q 2 192u(Xit) h

iq Ot 2m 0  0x2  +v(x)u kx'[th)

is a piecewise constant analogue of the one-dimensional Schridinger
equation

iqit(x, t) = -422 (x,t) + V(x)iP(x, t).

2m0

If u(x, t) satisfies conditions (4) and (5), with m = 2, then separation
of variables produces a formal solution

u.(x. t) = E + P1 QU(X),
j=1

for nh < t < (n + 1)h. Here, X&(x) are the eigenfunctions of the
operator q2(d2 /dx 2)/2mo, and P- 1 Qun(x) is the solution v.(x) of the
equation

q2v"(x) = 2moV(x)un(x)

that satisfies (4).
The Fourier method was also used to find weak solutions of the

boundary-value problem (3), (4), (5) and it is easily generalized to simi-
lar problems in Hilbert space. First, we remind a few well known defini-
tions. Let H be a Hilbert space and let P be a linear operator in H (ad-
ditive and homogeneous but, possibly, unbounded) whose domain D(P)
is dense in H, that is •D(P) = H. The operator P is called symmetric if
(Pu, v) = (u, Pv), for any u, v E •D(P). If P is symmetric, then (Pu, v)
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is a symmetric bilinear functional and (Pu, u) is a quadratic form. A
symmetric operator P is called positive if (Pu, u) Ž 0 and (Pu, u) = 0
if and only if u = 0. A symmetric operator P is called positive definite
if there exists a constant -2 > 0 such that (Pu, u) _ y211U112. With ev-
ery positive operator P a certain Hilbert space Hp can be associated,
which is called the energy space of P. It is the completion of •D(P),
with the inner product (u, v)p = (Pu, v); u, v E D(P). This product
induces a new norm IJuIJp = (Pu, u)1/2, u •E D(P), and if P is positive
definite, then hjull _• -- 11jullp. Since D(P) is dense in H, it follows
by using the latter inequality that the energy space Hp of a positive
definite operator P is dense in the original space H.

Assuming P is positive definite, we may consider the solution u(x, t)
of (3), (4), (5) for a fixed t as an element of Hp. If )(Q) C H, then
Qu(x, [t/h]h) may be treated as an abstract function Qu([t/hlh) with
the values in H. Therefore, the given BVP is reduced to the abstract
Cauchy problem

du(t1
+ Pu = Qu h) I t > 0,ult=o = uo E H. (10)

If (10) has a solution, we multiply each term by an arbitrary function
g(t) E Hp in the sense of inner product in H and get on the inter-
val nh < t < (n + 1)h the equation

(t ,g) + (u,g)p = (Qun,g), (11)

where un = u(nh). Conversely, if u E Cl((nh, (n + 1)h); D(P)) for all
integers n > 0 and satisfies (11), then it also satisfies Eq. (10). Indeed,
if u E fD(P), then (u,g)p = (Pu, g), and (11) can be written

du- + Pu- Qun,g =0, nh <_ t < (n + 1)h.

Since Hp is dense in H, then u(t) is a solution of Eq. (10).
Definition. An abstract function u(t): [0, co) -+ H is called a weak
solution of problem (10) if it satisfies the conditions:
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(i) u(t) is continuous for t > 0 and strongly continuously diferen-
tiable for t > 0, with the possible exception of the points t = nh
where one-sided derivatives exist.

(ii) u(t) is continuous for t > 0 as an abstract function with the values
in Hp and satisfies Eq. (11) on each interval nh < t < (n + 1)h,
for any function g(t): [0, oo) --ý Hp.

(iii) u(t) satisfies the initial condition (10), that is,

lim JJu(t) - U011H = 0.
t---+0

A weak solution u(t) is also an ordinary solution if u(t) E VD(P), for
any t > 0, and u(x, t) --+ uo(x) as t --+ 0 not only in the norm of H but
uniformly as well. It is said that a symmetric operator P has a discrete
spectrum if it has an infinite sequence {Aj} of eigenvalues with a single
limit point at infinity and a sequence {Xj} of eigenfunctions which is
complete in H. Suppose the operator P in (11) is positive definite
and has a discrete spectrum and assume the existence of a solution
u(t) = u(x, t) to Eq. (11) with the condition u(0) = u0. On the interval
nh < t < (n + 1)h this solution can be expanded into series (6), where
Tj(t) = (u(t),Xj). To find the coefficients Tj(t), we put g(t) = XL
in (11) and since Xk does not depend on t, then

dt Xk d -(u(t),iXk) = Tk(t),(dut) dt

(u,Xk)p = (Pu, Xk) = (u, PXk) = Ak(u,Xk) = AkTk(t),

which leads to the equation

Tn'(t) + AjTnj(t) = (Qu,,X,)

By selecting a proper space H, a weak solution corresponding to condi-
tions (4) can be constructed. A theorem has been stated in [10] that if
P and Q are linear operators in a Hilbert space and P is positive defi-
nite with a discrete spectrum, then there exists a unique weak solution
of problem (10).
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2.2. Initial-Value Problems. This topic has been explored recently
by Wiener and Debnath [10]. Eq. (3) with constant coefficients and
initial condition (5) has been considered in the domain

(x t) E f = (-oooo) x [0,oo).

Let u7)(x, t) be the solution of the given problem on nh < t < (n+ 1)h,
then

OUn (X, t) + Pu7) (x, t) = Qu7 )(x), (12)

at
where

un (x) = un (x, nh). (13)

Write

Un (X, t) = Wn (X, t) + Vn (X),

which gives the equation

(---- + Pw ) + Pvn(x) = Qu,(x),
at

and require that
0---•+ Pw,= 0,(14)

at
Pvn(x) - Qu7)(x). (15)

If v,,(x) is a solution of ODE (15), then at t = nh we have

wn(x, nh) = u,(x) - vn(x), (16)

and it remains to consider Eq. (14) with initial condition (16). It is
well known that the solution E(x, t) of the problem

-- + Pw = 0, w(x,0) = wo(x), (17)at
with wo(x) = 6(x), where 6(x) is the Dirac delta functional, is called
its fundamental solution. The solution of IVP (17) is given by the
convolution

w(x, t) = E(x, t) * wo(x). (18)
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Hence, the solution of problem (14), (16) can be written as

wn(x, t) = E(x, t - nh) * wn(x, nh), (19)

and the solution of (12), (13) is

un(x, t) = E(x, t - nh) * (un(x) - v.(x)) + vn(x), (20)

(nh < t < (n + 1)h).

Continuity of the solution at t = (n + 1)h implies

u.(x, (n + 1)h) = un+I(x, (n + 1)h) = Un+l(X),

that is,

Un+l(x) = E(x, h) * (un(x) - vn(x)) + vn(x). (21)

Formulas (20), (21) successively determine the solution of IVP (3), (5)
on each interval nh < t < (n + 1)h. Indeed, from Pvo(x) = Quo(x)
we find vo(x) and substitute both uo(x) and vo(x) in (20) and (21) to
obtain uo(x,t) and ui(x). Then we use ul(x) in (15) to find v1(x) and
substitute ul(x) and vi(x) in (20) and (21), which yields ul(x, t) and
u2 (x). Continuing this procedure leads to un(x, t), the solution of (3)
on [nh, (n + 1)h]. The solution vn(x) of (15) is defined to within an
arbitrary polynomial q(x) of degree < m. Since q(x) is a solution of
Eq. (17) with the initial condition w(x, 0) = q(x), then q(x) = E(x, t) *
q(x), and q(x) cancels in the formulas (20), (21). This proves that if
Eq. (17) with w(x,0) = uo(x) has a unique solution on t E (0,oo),
then there exists a unique solution of IVP (3), (5) on (0, co) and it is
given by (20), for each interval nh < t < (n + 1)h. Thus, there exist
unique solutions of Eqs. (1) and (2), with u(x, 0) = uo(x), in the class
of functions that grow to infinity slower than exp(x 2) as lxi --+ oo. For
Eqs. (1) and (2) we have

vn(x) = a-2 b j0(x - s)un(s)ds and v0(x) = a2rJ0oun(s)ds,

respectively, and E(x, t) = exp(-x 2/4a 2t)/2aVfir.
Formula (20) for the solution of the problem

ut (x, t) = a 2UXZ(Xl0 - bu., (, [ t] h) , u(X,0) = uo(x)
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on nh < t < (n + 1)h becomes
u(,t) = '- ) E(xt - nh) * U(X) +

where E(x, t) is the same as in Eqs. (1) and (2).
The above method may also be used to solve IVP for PDE of any

order in t with piecewise constant delay or systems of such equations. In
the latter case, P and Q in (3) are square matrices of linear differential
operators and u(x, t) is a vector function. Thus, the solution un(x, t)
of the problem

utt(x, t) = a2uzz(X, t) - bu.=(x, [t]),

u(x,O) = fo(x), ut(x,o) = go(x)

on n < t < n + 1 is sought in the form u,,(x,t) =- wn(x,t) + vn(x)
whence a2v"(x) - bu"(x, n) = 0 and 0 2Wn /1t 2 = a2 a 2 wn/8Ix 2 . Setting
u(x, n) = fn(x), ut(x, n) = gn(x) gives

vn(x) = a- 2bfn(X), w(x,n) = (1 - a 2 b)fn(x), wt(x,fn) = gn(x),

and

un(xt) = bf(X) + b1 ) f2(xa(tn))+f(x+a(tn))
a2 a2 21 [z+aQt-n)

1a J-a(t-n) gan(s) ds.

Putting t = n + 1 produces the recursion relations

fn+1 (X) = b fnX b )fn(x -a) + f(x +a)
a2 a2 2 1 zf+a+ _ gn(s) ds,

2a Jr-a

b( ) afn(x+a)-af'(x-a)
a2+)(x) a2 2

+ l(g,( (x , ) + gn(X - a)).
25
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Loaded partial differential equations have properties similar to those
of equations with piecewise constant delay. The IVP for the following
class of loaded equations

au(x t)aq a
auxt) - (, (-1x) U(X7t) + (X) U(X, tj), (22)

j=l

u(X,0) = uo(x)

was considered in [1] and [10], where (x,t) E R' x [0,T], the tj E
(0,T] are given, P(s) and Q(s) are polynomials in s = (sI,...,s,),
and E IQj(s)j # 0. Eq. (22) arises in solving certain inverse problems
for systems with elements concentrated at specific moments of time.
The Fourier transform U(s, t) of u(x, t) satisfies the equation

q

Ut(s,t) = P(is)U(s,t) + L Qj(is)U(s, tj),
j=l

whence,

q

U(s,t) = Uo(s)eP(is)t + k(P(is),t) L Qj(is)U(s, tj), (23)
j=1

where Uo(s) is the Fourier transform of uo(x) and

k(P(is), t) = f0t eP(is)y dy.

Denote
q

Aj = Uo(s)eP('8)ti, kj = k(P(is),tj), B = L Q,(is)U(s, tj),
j=1 (24)

then multiply by Qj(is) each of the equations

U(s, tj) =Aj +kjB, j =l,5...,jq

and add them. Hence,

q q

B = AjQj(is) + B L kjQj(is)
j=l j=l
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or

(1 - L k3Qj(is)) B L AjQj(is). (25)
j=1 j=1

The equation

q

A(s) =1 - L Qj(is)k(P(is), tj) = 0 (26)
j=1

is called the characteristic equation for (22) and its solution set Z is
called the characteristic variety of (22). It is said [1] that (22) is abso-
lutely nondegenerate if Z = 0, nondegenerate of type a if

a = infllmsl < oo, s E Z $ C',

and degenerate if Z = Ci. The case Z = 0 implies A(s) = const.,
since A(s) is meromorphic, and a meromorphic function that is not
constant assumes every complex value with at most two exceptions.
The equation A(s) = C can be written as

q q
P(is) + L Qj(is) - F Qj(is)eP(i))t = CP(is)

j=1 j=1

and is possible for q > 1 only if P(s) = const, otherwise exp(P(is)tj)
would grow faster than any polynomial, which breaks the latter equal-
ity. For q = 1 we have

A(s) = P(is) + Q,(is) - QI(is)eP(is)tl
P(is)

and in this case Z = 0 is equivalent to P(is) + QI(is) 0 0. On the
other hand, A(s) =- 0 is equivalent to

q q i ~ p i ~ j = 0
P(is) + E Qj(is) - L_, Q,(is)eP(i')ti 0,

j=1 j=1

which implies P(s) = const. This establishes the following proposition
which was stated in [11 without proof, namely Eq. (22) is absolutely
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nondegenerate if and only if either of the following conditions holds
true:

q
Wi P(s)=- C1, LQj(s)k(CI,tj) - C2 :rl 1;

j=1

or

(ii) q= 11 P(s) -+ Ql(s) _= 0.

Eq. (22) is degenerate if and only if
q

P(s) = C15, L Qj(s)k(Ci) I 1.
j=1

Substituting B from (25) in (23) leads to the proof that the uniqueness
classes for the solution of the Cauchy problem for an absolutely nonde-
generate equation (22) are the same as those for the equation (without
"loads") ut(x,t) = Pu(x,t). The homogeneous degenerate IVP (22)
(uo(x) = 0) has nontrivial solutions, with compact support. Suppose
that (22) is of finite type a(0 < a < co) and that u(x, t) is a solution
of (22) with uo(x) - 0. If

lu(x,t)l < COW~", x E R , t E [0,TI, (27)

and a < a, then u(x, t) =0 . For any a > a there exists a solution
u(x, t) # 0 of (22) with uo(x) = 0 satisfying (27). Integral transforma-
tions have also been used in the study of EPCA.

Consider the nonlinear initial-value problem

a- = A(D)u(x, t) + f(t, u(x, [t])), (28)

at
u(x,o) = uo(x),

where u(x,t) and uo(x) are m-vectors, x = (XI,X 2,... ,XN) E RN,

A(D) = AaDa,

a= (al,a2, ... , aN), I&I = , -+ a2 +"- "' -& +N,

D& Dal... DN, Dk=i09 /Xk (k=1,2....,N)
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the coefficients A,, are given constant matrices of order m x m, and
the m-vector f E CI([n,n + 1) x Z 2 (R N),Z2 (QRN)) n = 0,1,2,....
The number r is called the order of the system. It is assumed that
uo E Z 2 (RN), and the solutions sought are such that u(x, t) E p2(RN),

for every t > 0. Let pI(s), P2(s),... ,im(S) be the eigenvalues of the
matrix A(s). The system

eOuau = A(D)u (29)

is said to be parabolic by Shilov if

Reyj (s)•:c _csjh +b, j Im

where h > 0, c > 0, and b are constants. For a fixed t we may consider
the solution u(x, t) as an element of Z 2 (RN), and f(t, u(x, [t])) may
be treated as an abstract function f(t, u([t])) with the values in Z2.
Therefore, IVP (28) is reduced to the abstract Cauchy problem

du
d- = Au + f(t, u([t])), Ua= 0 = uo E 2e2. (30)

Applying to (29), with the initial condition u(x, 0) = uo(x), the Fourier
transformation T in x produces the system of ordinary differential equa-
tions

Ut(s, t) = A(s)U(s, t), (31)

with the initial condition U(s,0) = Uo(s), where U(s,t) = T(u(x,t)),
Uo(s) = Y(uo(x)), and A(s) is a matrix with polynomial entries de-
pending on s = (S5,S2,... ,SN). The solution of (31) is given by the
formula

U(s,t) = e U

Parabolicity of (29) by Shilov implies that the semigroup T(t) of op-
erators of multiplication by etA(s), for t > 0, is an infinitely smooth
semigroup of operators bounded in Z2(RN). Together with the require-
ment h = r, this ensures that the Cauchy problem for (29) is uniformly
correct in Z2 (RN) and all its solutions are infinitely smooth functions
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of t, for t > 0. Since f is continuously differentiable, problem (28) has
on [0, 1) a unique solution

u(t) = T(t)uo + fo T(t - s)f(s, uo) ds.

Denoting ul = u(1), we can find the solution

u(t) = T(t - 1)ul + i: T(t - s)f(s, ul) ds

of (28) on [1, 2) and continue this procedure successively. If

f(t, u([t])) = Bu(t]),

where B is a ccustant matrix, the solution of (28) for t E [0, co) is given
by

'ý(t) = (T(t - [t]) + 4~T(t - s)B ds)

( k
x I T(1) + T(k -s)Bds U0,

k=[i k- 1

This proves that problem (28) has a unique solution on RN x [0, c0)
if system (29) is parabolic by Shilov, the index of parabolicity h co-
incides with its order r, and f E CG([n,n + 1]) x Z 2 (RN),42 2 (RN)),
n = 0,1,2 ....

2.3. Wave Equations with Discontinuous Time Delay. The ii,

fluence of terms with piecewise constant time on the behavior of the
solutions, especially their oscillatory properties, of the wave equation
was initiated in 1991 by Wiener and Debnath [11, 121.

First, we shall discuss separation of variables in systems of PDE.
Consider the BVP consisting of the equation

Ut(x, t) = AU.-(x, t) + BUxx(x, [t]), (32)

the boundary conditions

U(0,t) = U(1,t) = 0, (33)

and the initial condition

U(x,0) = Uo(x). (34)
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Here, U(x,t) and Uo(x) are real m x m matrices, A and B are real
constant m x m matrices and [.] denotes the greatest-integer function.
Looking for a solution in the form

U(x,t) = T(t)X(x) (35)

gives

T'(t)X(x) = AT(t)X"(x) + BT([t])X"(x),

whence

(AT(t) + BT([t]))-'T'(t) = X"(x)X-l(x) = _p2

which generates the BVP

X"(x) + P 2X(x) = 0, (36)

X(0) = X(1) = 0

and the equation with piecewise constant argument

T'(t) = -AT(t)P 2 - BT([t])P 2 . (37)

The general solution of Eq. (36) is

X(x) = cos(xP)CI + sin(xP)C2,

where

cos(xP) = 0 (-1)nx 2np 2 = (-l)nx2n+IP2n+l

n=O (2n)! sin(xP) == (2n + 1)!

and C1 , C2 are arbitrary constant matrices. From X(0) = 0 we con-
clude that C1 = 0, and the condition X(1) = 0 enables us to choose
sin P = 0 (although this is not the necessary consequence of the equa-
tion (sin P)C 2 = 0). This can be written eiP - e-iP = 0, e 2iP = I. As-
suming that all eigenvalues Ph, P2,..., Pm of P are distinct and S- PS =
0 = diag(pj,p2,... ,pm), we have exp(2iSVS-') = I, Se2i•S-1 = I,
and e2 M• = I. Therefore, 1) = diag(7rj1, 7rj 2 ,..., 7rjm), where the jk are
integers, and P = ST)S-',

p 2 = S1 2S- 1 = Sdiag( r2j2, 7r2j,. .. r2j
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sin(xP) = S sin(xl))S- 1 = S diag(sin 7rjlx,... ,sin 7rjmx)S-1. Further-
more, we can put

Pj = diag(7r(m(j - 1) + 1),... ,7rmj), (38)

(j = 1,2,...)

in (36) and obtain the following result:
There exists an infinite sequence of matrix eigenfunctions for BVP (36),

Xj(x) = Vdiag(sin7r(m(j - 1) + 1)x,... ,sinwrmjx), (39)

(j = 1,2,...)

which is complete and orthonormal in the space 22[0, 11 of m x m
matrices, that is,

1J Xj(x)Xk(x) ds = 0, jok -

where I is the identity matrix.

Let E(t) be the solution of the problem

T'(t) =-AT(t)P 2, T(O) = I (40)

and let

M(t) = E(t) + (E(t) - I)A- 1B. (41)

If the matrix A is nonsingular, then Eq. (37) with the initial condition
T(0) = Co has on [0, oo) a unique solution

T(t) = M(t - [t])MA[ t (1)Co. (42)

If IIM(1)II < 1, then IIT(t)II exponentially tends to zero as t --+ +oo.
For the scalar parabolic equation

ui(x, t) a= xxxf ! 1bii'X(x, t])

we have m = 1 and Pj = 7rj, acord,,iii to (38). For Eq. (40) with

A = a2 and P = Pj, we have Ej(t) = e , 2 j2t and

Mi(t) = e- 22j'- •(lb e- ea_ 2 ,r)2 j 2 t

lvi j\L = e -a
2 .
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Hence, the inequality IMj(1)I < 1 is equivalent to

-1 < e-" 2Z2 j2- b (1 - e-a22j2 ) < 1,
a2

whence

-a 2 < b < a21 + e-a2li2j2

1 - e-_a21r~j2"

Since the function (1 + e-)/(1 - e-) is decreasing, all functions Tj(t)
exponentially tend to zero as t -- oo if and only if

- a2 < b < a2 . (43)

If b < -a 2, then all Tj(t) monotonically tend to infinity as t -4 oc; and
if

21 + e-a27r
b>a1 - e-a 27r2 7

then all Tj (t) are unbounded and oscillatory. For any b > a2 , there
exists a positive integer jo such that the Tj (t) are unbounded and oscil-
latory, for j > jo. Indeed, letting b = a2 + e and solving the inequality

a2 + c > a21 + e-2'2
1 - e-a 2 72j 2

gives
e-a21r2j2 •22+E'

which holds for any positive E and sufficiently large j and implies
Mj(1) < -1. If b = -a 2 , then Mj(t) = 1, Tj(t) = Tj(O), and
u(x,t) = uo(x), for all t. Therefore, the condition Ibi < a2 is neces-
sary and sufficient for the series

00

u(x, t) = E Tj(t)X,(x) (44)
j=I

to be a solution of the scalar BVP (32)-(34), with A = a2 and B = b, if
uo(x) is three times continuously differentiable. The coefficients Tj(O)
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are given by

Tj(O) = fo1 uo(x)Xj(x) dx,

where Xj(z)= vf•sin(.jz) and u0(z) e C3[0,1] satisfies

u0(0) = u0(1) = 0.

The solution T = 0 of Eq. (37) is globally asymptotically stable as
t --, +cx) if and only if the eigenvalues Ar of the matrix M(1) satisfy
the inequalities

I•rl < 1, r- 1,...,m. (45)

If all eigenvalues of A have positive real parts and Uo(x) E C3[0,1],
IIA-1BII < 1, then BVP (32)-(34) has a solution (44). This series and
all its term-by-term derivatives converge uniformly.

Separation of variables in the equation with constant coefficients

sit(x, t) = a2u,,(x, t) - bu,,(x, [t]) (46)

and boundary conditions (33) yields Xj(x) = v•sin(rjx) and leads to

the EPCA

Tj'(t) + a2r2j2Ti(t) = br2j•T•([t]). (47)

For brevity, omit the subindex j and use the substitution T'(t) = V(t),
which changes (47) to a vector EPCA

w'(t) = Aw(t) + Bw([t]), (48)

where w = col(T, V) and(0 10)(,
-- _a27r2j2 , -- bTrOj2 •

A

Eq. (48) on the interval n < t < n + 1 becomes

w'(t) = Aw(t) + Be., Cn = w(n)

with the solution

w(t) = M(t- n)Cn,

!
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where

M(t) = eAt + (eAt - I)A-1 B. (49)

Therefore, Eq. (48) with the initial condition w(O) = co has on [0, oo)
a unique solution given by the right-hand side of (42), where M(t) is
defined in (49).

For b < 0, the solution w = 0 of Eq. (48) is unstable. Indeed,
computations show that

eAt = cos(wt)I + w- 1 sin(wt)A

and

e At _l=(COS Wt--1 W- lsin wt ,

( --wsinwt coswt-1

where w = a7rj. Also

(e-At I)A-'B =(b(1 - coswt)/a 2 ob t

(bwsinwt)/a 2  o)

Hence,

M(t) = coswt + ba-2 (1- coswt) w- sinwt)
(ba-2- 1)W SinWt Cos Wt

and
b b

det M(1) = 1 - + - cos w.

The condition b < 0 implies det M(1) > 1 and shows that at least one
of the eigenvalues A of M(1) satisfies JAI > 1. Therefore, IHw(t)I --+ oo
as t -+ +oo, for some initial vector co # 0.

For b > a2, the solution w = 0 of Eq. (48) is unstable. Calculations
yield

det(M(1) - AI) = A2 - 2 cos + - sin 2  A + 1 -a + b cosW
aco 2) a2 a2
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and the expressions Al = s + d, A2 = s - d for the eigenvalues A,, A2 of
M(1), where

2b 2 2 b sin2 w+b 4S = CosW + a2 si 
a4 s,

The condition b > a2 shows that d2 >0 and A 1 > 1. The latter
inequality implies I1w(t)II -* cc as t -* +oo, for some initial vector
Co # 0.

The solution w = 0 of Eq. (48) is asymptotically stable as t -- +00
if and only if

0 < b < a2, (50)

and w 6 27rn, n = 0, 1, 2,. ... The condition d2 < 0, which means that
the eigenvalues of M(1) are complex, leads to

Cos - >
2 (2a 2 - b)2'

whence

b <a2 (1 -tan2 4) or b <a 2( Co2 4)

Since IAlI = IA21 and detM(1) = AIA 2, the inequality IAII < 1 is
equivalent to det M(1) < 1, that is, to b > 0. Therefore, in the case of
complex eigenvalues, a criterion for asymptotic stability is

0< b <max a 2 (1 - tan 24) ,a2 (1-_cot24)W

The inequality d2 > 0 in the case of distinct real eigenvalues leads to

b > max(a2 (1 - tan24) ,a 2 (1- cot24))

and the inequalities A1 < 1, A2 > -1 yield b < a2. Hence, in this case
a criterion of asymptotic stability is

max (a2 (1 - tan2 W) ,a 2 (1 - cot 2 4) < b < a2 .
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Finally, if

b = max (a2 (1 - tan2 W) a2 (1- cot 2

then d = 0 and Al = A2 = cos w + ba- 2 sin 2 w/2, whence

cosw < A, <cos2 w/2

and IJAI < 1. According to (45), this implies asymptotic stability and
completes the proof of criterion (50).

If b = a 2, then A, = 1, A2 = cosw, and the solutions of (48) are
bounded but not asymptotically stable. If w = 27rn, then A1 = A2 = 1,
which leads to the existence of unbounded solutions for (48). If the
coefficient a is irrational, then (50) is a criterion of asymptotic stability
of the solutions to (47) for all j, since recalling that w = wj = alrj,
we note that the equality alrj = 27rn is impossible for any irrational
a. For any rational a, there exist infinitely many integers j such that
the corresponding solutions wj(t) of (48) are unbounded. Furthermore,
each component of every solution of Eq. (48) oscillates if and only if
either of the following conditions holds true:

(i) b <max a 2(1 -tan24W) ,.2(1-_cot 24)

a2
(ii) max -1_t2W 1_cot2 < b< 2s2 w

and cosw < -12

In conclusion, it is worth noting that the asymptotic properties of
Eq. (47) depend on the algebraic nature of the coefficient a. For b < 0,
all solutions of Eq. (47) are unstable and oscillatory; for b > a 2 all
solutions of Eq. (47) are unstable and nonoscillatory. These two cases
hold true for both rational and irrational values of a. For

0< b <max a 2 (1 - tan24W) ,aý2 (1-_cot24W)) I
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all solutions of (47) are asymptotically stable and oscillatory, provided
that w 34 27rn. However, for any rational a, there exist infinitely
many integers j such that wj = 27rn, which leads to the existence
of unbounded solutions for (47). Furthermore, since w = wi = awrj
the inequality cos w < -1/2 breaks down for infinitely many inte-
gers j. Therefore, under the above hypothesis (ii), there are infinitely
many solutions of Eq. (47) which are asymptotically stable and os-
cillatory, as well as infinitely many solutions which are asymptoti-
cally stable and nonoscillatory (w 5 27rn). Also, for w 5 27rn and
a2 /2 sin 2 (w/2) < b < a2 , the solutions of (47) are asymptotically stable
and nonoscillatory. Problems of this nature deserve further investiga-
tion.
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